
LA-UR-02-0852
Approved for public release;
distribution is unlimited.

Title: MATLAB-Based VHDL Development Environment

Author(s): Kimberly K. Katko
kkatko@lanl.gov, (505) 665-5134
and
Scott H. Robinson
shr@lanl.gov, (505) 665-1954

MS D448, PO Box 1663
Los Alamos National Laboratory
Los Alamos, NM 87545
Fax: (505) 665-4657

Submitted to: Engineering of Reconfigurable Systems and Algorithms
June 24-27, 2002, Las Vegas, Nevada, USA

Los Alamos National Laboratory, an affirmati
Energy under contract W-7405-ENG-36. By
free license to publish or reproduce the publ
National Laboratory requests that the publis

ve action/equal opportunity employer, is operated by the University of California for the U.S. Department of
 acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-

hed form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos
her identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos

National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse
the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

is

mailto:kkatko@lanl.gov
mailto:shr@lanl.gov

MATLAB-Based VHDL Development Environment
Kimberly K. Katko
MS D448, P.O. Box 1663
Los Alamos National Laboratory
Los Alamos, NM 87545

Scott H. Robinson
MS D448, P.O. Box 1663
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract
The Reconfigurable Computing program at Los
Alamos National Laboratory (LANL) required
synthesizable VHDL Fast Fourier Transform (FFT)
designs that could be quickly implemented into FPGA-
based high speed Digital Signal Processing
architectures. Several different FFTs were needed for
the different systems. As a result, the MATLAB-Based
VHDL Development Environment was developed so
that with a small amount of work and forethought,
arbitrarily sized FFTs with different bit-width
parameters could be produced quickly from one
VHDL generating algorithm. The result is highly
readable VHDL that can be modified quickly via the
generating function to adapt to new algorithmic
requirements. Several additional capabilities are
integrated into the development environment. These
capabilities include a bit-true parameterized
mathematical model, fixed-point design validation,
test vector generation, VHDL design verification, and
chip resource use estimation.

1 Introduction
LANL needed the flexibility to build a wide

variety of FFTs with a quick turn around time. It
was important to have an effective way of trading
off size, speed and precision. The FFTs also
needed to be efficiently implemented into our
existing FPGA-based architecture.
Reconfigurable computing systems at LANL
have been designed to accept two or four inputs
on each clock. This allows the data processing
rate to be reduced to a more manageable speed.
This approach, however, limits us from using
existing FFT cores.

A MATLAB-Based VHDL Development
Environment (MBVDE) was created in response
to our FFT needs. MBVDE provides more
flexibility than is available with VHDL. The
technique allows new designs to be implemented
and verified quickly. In addition, analysis tools
are incorporated to evaluate trade-offs.

MBVDE incorporates the performance of
VHDL, the fast design time of core generation,

and the benefit of not having to know VHDL
available with C-tools into one environment. The
MBVDE approach is not a comprehensive
solution, but is a powerful method for algorithms
that involve the cascading of fundamental
building blocks.

2 VHDL Development Environment
Comparisons

There are advantages and disadvantages of
the different development tools. The trade-offs
include development time required, flexibility of
design, control over design details and overall
performance, code readability and visibility, and
the need to know VHDL. These trade-offs are
considered as a function of different tools in this
section. Tools contrasted include cores, high-
level tools, hand coded VHDL, and LANL’s
MBVDE. Commercially or publicly available IP
cores and vendor supplied cores or core
generators will be grouped into one category and
referred to as cores. High-level tools such as C-
to-VHDL and C-to-EDIF tools will also be
grouped into one category and referred to as
high-level tools.

2.1 Development Time
One of the most important considerations

when porting an algorithm to an FPGA is
development time. Of the three standard
methods, development time using cores is the
fastest. Using high-level tool takes significantly
longer, while digital design using VHDL takes
longer still. For our design method, the initial
development of an algorithm for automated
VHDL generation will take slightly longer than
that of standard hand coding of VHDL. Once
this groundwork is laid, the generation of new
VHDL with the MBVDE can be done with
speeds comparable to those using core generation
programs.

2.2 Flexibility
Another important aspect of any design

method is the inherent flexibility afforded to the
designer. In this area, cores can be particularly
poor, as the options are severely limited. This
lack of flexibility limits the applications for
which this core can be used. High-level tools and
hand coding provide more flexibility, but only
within the individual application being written.
If one decided to change the length of an FFT,
for example, new code and new parameters must
be provided. With MBVDE, an unlimited
number of input parameters can be built into the
design. The result is tremendous flexibility
within the chosen algorithm, where the designer
can effectively decide how much of the problem
should be constrained. The downside is that not
all functions are good candidates for this type of
design. The types of designs that are best suited
to the MBVDE are ones based on algorithms that
have regularly repeating (cascaded) structures.
FFTs, lattice filters, recursions such as
Levinson’s and filter implementations such as
polyphase structures and Hogenauer decimators
are all examples of algorithms where cascaded
versions of a fundamental base algorithm
combine to form a more complex structure [1],
[2], [3].

2.3 Design Control and Performance
Control over design details and subsequent

design performance are always important. The
highest performance designs will come from
cores. When designing with high-level tools,
details of the design are difficult to control.
Unlike with cores, this lack of control is not a
feature that aids in performance. Rather,
tweaking the design to gain added performance is
very difficult. When designing with VHDL,
whether for a single hand-coded piece of code or
for MBVDE, control over design details is
straightforward.

2.4 Code Visibility and Readability
The cost of the high performance attained

with a core is the lack of knowledge of design
details. Visibility into the design provides the
knowledge that is required to develop bit-true
mathematical models and subsequent system
verification tests. When the core is used in

relative isolation this is not a big problem,
because cores are generally tested thoroughly
before they are released to the public. Lack of a
bit-true model of the core does become a
problem, however, when the core needs to be
tightly integrated into a larger system. Designs
formed using high-level tools often have similar
limitations. Knowledge of the inner workings of
the design is limited. In addition, these tools
generally produce VHDL code that is difficult to
follow and understand, even for experienced
programmers. Code produced by tools that skip
the VHDL step and go straight to producing
EDIFs can be even more difficult to understand.
This lack of code visibility contributes to a poor
debugging environment and in extreme situations
makes debugging impossible in the standard
sense. VHDL, whether hand coded or produced
as output from MBVDE, is straightforward to
follow and understand assuming the code is
clearly written and appropriately documented.
This readability can be invaluable during the
debugging process. Knowledge of the internal
design details is also complete and it is therefore
possible to build bit-true mathematical models to
aid in the testing and debugging phases.

2.5 Knowledge of VHDL
When VHDL resources are limited, the need

for the designer to have advanced VHDL coding
skills also becomes an issue. There is no need to
know VHDL to implement cores targeted for
isolated modules. Some basic VHDL knowledge
is required to integrate them with additional
designs, however. While VHDL knowledge is
not required to design with high-level tools,
producing high-performance designs without it is
difficult. Of course designing hand-coded
VHDL or MBVDE generators requires
knowledge of the language. The use of existing
MBVDE generators, however, does not.

3 MBVDE Fundamentals
As discussed above, the LANL

Reconfigurable Computing program required
FFTs of varying size and precision for multiple
projects. The desired FFTs needed to handle at
least 100 Msamples/sec taking either 2 or 4
inputs per clock. Due to certain environmental
requirements on memory usage, they could not

make use of select RAM. Trade offs between
chip resources and numerical precision were
critical to the designs. The initial algorithmic
delivery required a 32-point FFT, but future
applications had the potential to utilize sizes
from 16 up to 1024 points. No existing FFT
cores met these design constraints. Hand coding
VHDL was the initial approach, but doing so for
larger FFTs became increasingly tedious and
accident-prone. At this point, the decision was
made to leverage our knowledge of the basic
repeating structures that make up an FFT to add
some automation to the development process
where appropriate. The MBVDE was developed
in response to the above needs.

Automatic VHDL generation for specific
applications has been done on several programs
in the past [4], [5], [6], [7]. The unique feature
of MBVDE is the additional capabilities that are
built into the development environment. The
capabilities include a bit-true parameterized
mathematical model, fixed-point design
validation, test vector generation, generation of
synthesizable VHDL, VHDL design verification,
and chip resource use estimation. The features,
development and benefits of the LANL MBVDE
FFT are discussed in the remainder of this
section, using the FFT algorithm as a concrete
example.

3.1 MATLAB as Development
Environment

MATLAB was chosen as the development
platform for several reasons. First, it is a widely
used program that runs on many platforms.
MATLAB is a natural fit for signal processing
applications due to the built-in functions and
available signal processing toolboxes and data
visualization capabilities. The built-in FFT
function made design verification very clear-cut.
The fact that MATLAB is an interpreted
language makes data manipulation and analysis
quick and easy. A final reason for choosing
MATLAB was that it provided an analysis
environment for the easy creation of test vectors
and the comparison of results.

3.2 Algorithmic Considerations
As previously described, this is not a

comprehensive method applicable to every

design situation. It is a powerful tool when
cascading and placing smaller, fundamental
building blocks creates the desired algorithm.
Thus, before implementing an algorithm using
the MBVDE, the desired algorithm itself must be
analyzed for fitness to this technique and the
component building blocks need to be identified.

3.2.1 Base design
For any cascaded or recursive style

algorithm, a fundamental base algorithm is
needed to eventually form the overall complex
design. To enable this type of situation, LANL
started with a hardware-verified, non-
parameterized 32-point FFT. This base design
implements a Decimation-In-Frequency Fast
Fourier Transform (DIF-FFT) algorithm utilizing
a heavily pipelined architecture to maximize data
throughput. Inputs to the design are two real data
samples. Output is one complex sample per clock
cycle. The pipelined architecture allows data to
enter and results to exit the logic on every clock
cycle.

The DIF-FFT is built around a cascade of
standard radix-2 butterfly computation modules
[1]. This radix-2 module is the fundamental base
algorithm for this particular design. Inputs to the
radix are two complex data values and one
complex twiddle value. The output is two
complex result values. Each radix performs four
complex additions, two complex multiplies and
one complex vector multiply to correctly scale
the output. The pipeline architecture of the radix
allows new data to enter on each clock cycle and
has a three-clock latency.

3.2.2 Identifying repeating structures
As stated previously, the primary use of this

technique is for creating complex algorithms
from smaller, fundamental building blocks.
While the radix-2 is the primary building block,
others are required to build a working larger FFT.
The basic structures that make up an N-point FFT
are shown below in Figure 1. For the current
application, two points arrive at the input of the
FFT on each clock cycle. The points arrive in
natural order and need to be reordered (a bit
reversing operation) before going into the first
pass radix-2 components. Therefore, all N points
must arrive before the input data reordering can
begin. Once all points have arrived and the

reordering is complete, the data can be run
through the first pass radix-2 components.
Explicitly instantiating each of the radix-2
components allows the rest of the design to flow
smoothly. All N/2 first pass radix-2 operations
are completed simultaneously. The first pass
radix-2 outputs then go through another round of
reordering before being input to the second pass
radix-2s. This procedure is followed for the
remainder of the passes.

Figure 1

Figure 2

A space saving improvement can be made at

this point, however. By instantiating just one
radix-2 component per pass, the data for that pass
can be run through the radix-2 sequentially, one
pair of points at a time. Instantiating a single
radix-2 component per pass requires some
additional data management, but saves significant

chip space, specifically in look up tables (LUTs).
Holding the data points before feeding sequential
pairs to the radix-2 requires the addition of a
delay component. Following the radix-2
operation, the data points need to be held until
enough are present to do the data reordering for
that pass. This process of holding, reordering,
delaying and running through the radix-2 is
repeated for each pass. This new structure is
shown in Figure 2. The structure of the FFT has
now been broken down into its basic elements.

3.3 MATLAB Model Development Process
Once the mathematical algorithm has been

analyzed on paper and broken down into the
appropriate building blocks and a fundamental
base algorithm, the process moves into the
MATLAB environment so that models can be
created and designs verified. It is in this stage
that fixed-point models are created and the
overall design correctness is verified by
comparing to desired results with carefully
chosen test vectors.

3.3.1 Identifying algorithm input
parameters

Since the goal of this environment was to
create FFT designs meant to accommodate
several different algorithmic applications, the
next step was to identify necessary input
parameters so that all desired combinations were
covered. The parameter choices for the varying
FFT sizes were clear at this stage in the design:
FFT size, input data bit-width, bit-widths of data
after each radix-2 pass (internal scaling strategy),
and twiddle factor bit-width were all important
variables to allow use of the resulting FFTs in the
different situations described previously.
Writing code so that these parameters were
inputs into the VHDL generator was of
paramount importance for LANL’s particular
situation.

3.3.2 Floating-point cascades
The first step after identifying a base

algorithm is to implement these building blocks
in floating-point MATLAB to verify that the
desired results are achieved. Writing a simple
MATLAB module to mimic the radix-2 step and
writing a MATLAB function to generate the

twiddle factors needed between cascaded stages
to implement larger FFTs was the starting point
for this example. Once these two modules were
written, N-point FFTs were created through
combinations of these building blocks and the
resulting outputs were compared with the built-in
MATLAB FFT function to verify that the desired
result was obtained.

3.3.3 Fixed-point cascades
To migrate towards a VHDL design, a fixed-

point version of the radix-2 function was then
written in MATLAB. This fixed-point module
has input parameters that control the desired
input and output data bit-widths. The precision
of the twiddle factors used in an individual radix-
2 operation is also an input parameter. The data
is allowed to grow to maximum possible bit-
width throughout the radix-2 module. The
outputs are truncated prior to being output from
the function. The fixed-point design internal to
the radix-2 module is designed such that
overflow and underflow are impossible.

The next stage in the development cycle was
to create arbitrarily sized FFTs based on the
fixed-point radix-2 algorithm and the fixed-point
twiddle generation module. These fixed-point
FFTs built on cascades of fixed-point radix-2
functions were then compared with the floating-
point cascades described above and the built-in
MATLAB FFT function to verify that correct
performance was being achieved.

3.3.4 Bit-true, parameterized
mathematical model

Once the basic FFT structures were broken
down, a bit-true model for the entire
parameterized design was developed. Our
previously gained knowledge of building FFTs of
different sizes was now applied to building a
model for an arbitrary-point FFT. Routines were
developed in MATLAB to calculate the data
swapping between each pass as well as the data
reordering (bit-reversing) before the first pass.
The arbitrary-point model calculates the FFT by
looping log2(N) times for an N-point FFT. Each
pass through the loop involves data reordering
and a radix-2 operation. All data points are run
through the radix-2 module, 2 points at a time.

The loop portion of the N-point FFT function is
shown below in Figure 3. The model was
verified by setting the precision to full scale,
scaling the output of the model and then
comparing the results to those from the
MATLAB built-in FFT.

Figure 3

3.4 Writing VHDL and VHDL Generators
The next step of the process is to build the

VHDL generators. There are four basic steps to
building a VHDL generator. The steps are
repeated for each function in the design as well
as for the top-level design. First, the function is
written in VHDL for a specific set of parameters.
A 16-point FFT was chosen for this step. The
finished code should be tested against the bit-true
mathematical model of the function. Once the
code has been verified, the VHDL generator can
be written. The VHDL is generated from
MATLAB with the use of fprintf statements
embedded in loops to write text to a .vhd file.
The generator is then used to produce VHDL
modules for several different parameter
combinations. Finally, the modules are inspected
by hand and tested against the bit-true
mathematical models.

 A portion of the MATLAB code used to
generate the twiddle factors in the top-level FFT
function is shown below in figure 4. A snippet of
VHDL code that was generated from this
function is shown in figure 5.

Figure 4

Figure 5

The radix-2 routine (both MATLAB and

VHDL) has parameterization built into the
design. As a result, this code never changes
based on any of the input parameters. For this
reason, a VHDL generation routine was not
designed for this function.

Once the procedure detailed above has been
completed for all functions, a test bench for the
full system is written in VHDL and used to test
the generated code for several parameter
combinations. A make file also needs to be

written. Code generators for
the test bench and the make
file can then be developed as
well.

Generating the code
from MATLAB saved a
significant amount of time
that would have otherwise
had to be spent copying,
pasting and editing.
Additionally, the automatic
code generation cut down on
potential typing errors.
Furthermore, modifications
to the code can be made in
one place in the MATLAB
generation code rather than
in many points in the VHDL.
This is a very useful feature
when tweaking the code for
increased performance.

3.5 Additional Utilities
Automatic VHDL

generators become very powerful when coupled
with additional utilities. Several utilities were
built to complement the FFT generation program.
First, a MATLAB function was built to verify
designs as well as generate the code. This
function generates the VHDL specified by the
input parameters, creates a file of input vectors,
allows time for Modelsim to run the VHDL code,
runs the same data through the MATLAB bit-true
model and compares the VHDL and MATLAB
outputs for rapid design verification.

Another utility was written to validate the
performance of the fixed-point design selected by
the FFT generator input parameters. The
validation is done by running synthetic data
through the MATLAB built-in FFT (full-
precision, floating-point) and the bit-true model
and analyzing the differences. This tool can be
used to determine a set of bit-width that yield
minimum acceptable performance and the point
of diminishing returns. A minimum of one bit of
growth per pass generally yields respectable
results for this algorithm. Finally, a function was
built to estimate the number of register bits that
will be used to implement the design on an
FPGA. The result is expressed both as bits and
as a percentage of register bits available in a

Virtex 1000 chip. These two functions can be
used together to examine the trade-off between
design precision and chip resources use very
efficiently.

3.6 Final Design Performance in Hardware
Several FFT designs were run through

Synplicity and Xilinx Place and Route to get size
and space estimates for the Virtex 1000 chip.
Sizes up to 128 points can be implemented and
run at speeds over 50 MHz. Several designs have
been successfully verified in hardware. Each
design tested has been verified on the first
attempt, and therefore has not needed debugging.
An important strength of this and other MBDVE
designs is that they are easily partitioned across
several chips because they are built from
cascaded structures.

4 Conclusion
The MATLAB-based VHDL Design

Environment can be a powerful tool for VHDL
development for many common algorithmic
situations. The techniques described in this
paper allow the production of highly readable,
highly parameterized code that will allow the
quick deployment of a common algorithm into
many different application environments. As
described through the example of the FFT, the
MBVDE provides an environment where a
modicum of up front work makes the generation
of application specific code much easier later in
the development process. Thus, the resulting
code is more portable to varying applications,
allowing custom implementations without
redesigning the VHDL for every single
algorithmic situation.

A side benefit of using MBVDE is that it
imposes rigor in the development process. It is
natural to take the time to tie up loose ends and
spend time documenting when it is clear that the
code will be reused in the future. This makes the
hand off to other developers much easier. In
addition, the algorithm being broken down into
its basic structures makes visualization and
partitioning across chips much easier.

The power of MBVDE resides in the
additional utilities that are built into the
environment. These utilities include a bit-true
parameterized mathematical model, fixed-point

design validation, test vector generation,
generation of synthesizable VHDL, VHDL
design verification, and chip resource use
estimation.

5 References
[1] Alan Oppenheim, Ronald Schafer, “Discrete-

Time Signal Processing”, Englewwod Cliffs,
NJ, Prentice Hall 1989.

[2] Monson Hayes, “Statistical Digital Signal
Processing and Modeling”, New York, John
Wiley and Sons, Inc. 1996.

[3] E.B. Hogenauer, “An Economical Class of
Digital Filters for Decimation and
Interpolation”, IEEE Transactions on
Acoustics, Speech and Signal Processing,
29(2):155-162, April 1981.

[4] C. Schuler, “Code Generation Tools for
Hardware Implementation of FEC Circuits”,
Proceedings of the 6th IEEE International
Conference on Electronics, Circuits and
Systems, Pafos, Cyprus, September 5, 1999,
pp. 221-224.

[5] M. Diepenhorst, M. van Veelen, J.A.G.
Nijhuis, L. Spaanenburg, “Automatic
Generation of VHDL Code for Neural
Applications”, International Joint Conference
on Neural Networks, Washington DC, USA,
July 10, 1999, pp. 2302-2305.

[6] Josef Dalcolmo, Rudy Lauwereins, Marleen
Ade, “Code Generation of Data Dominated
DSP Applications for FPGA Targets”, 9th
IEEE International Workshop on Rapid
System Prototyping, Leuven, Belgium, June
3-5, 1998, pp.162-167.

[7] Daijin Kim, In-Hyun Cho, “FADIS: An
Integrated Development Environment for
Automatic Design and Implementation of
FLC”, Annual Conference of the North
American Fuzzy Information Processing
Society, Syracuse, NY, USA, September 21-
24, 1997, pp. 33-39.

	MATLAB-Based VHDL Development Environment
	1 Introduction
	2 VHDL Development Environment Comparisons
	2.1 Development Time
	2.2 Flexibility
	2.3 Design Control and Performance
	2.4 Code Visibility and Readability
	2.5 Knowledge of VHDL

	3 MBVDE Fundamentals
	3.1 MATLAB as Development Environment
	3.2 Algorithmic Considerations
	3.2.1 Base design
	3.2.2 Identifying repeating structures

	3.3 MATLAB Model Development Process
	3.3.1 Identifying algorithm input parameters
	3.3.2 Floating-point cascades
	3.3.3 Fixed-point cascades
	3.3.4 Bit-true, parameterized mathematical model

	3.4 Writing VHDL and VHDL Generators
	3.5 Additional Utilities
	3.6 Final Design Performance in Hardware

	4 Conclusion
	5 References

		2002-04-29T16:18:28-0600
	Viola Vigil

